
1

2

PVS-Studio C++ analyser's
architect.

I love C++, cats, and
whining about legacy code

About me

3

• Exploring dusty corners of C++

• Interactivity

• Hopefully, learning something new

• Having fun

What is this talk about?

4

C+++++

5

int main()

{

int a = 5;

int b = 2;

std::cout << a+++++b;

}

C+++++

6

• Does it compile?

• Why?

C+++++

7

C+++++

a+++++b

a+++++b

a :identifier

8

C+++++

+++++b

a :identifier

+++++b
+ :addition

++++b

++ :increment
++++b

9

C+++++

10

C+++++

a :identifier ++ :increment

a+++++b
++ :increment

+ :unary b :identifier

11

C+++++

a ++ ++ + b

lvalue prvalue oopsy

The operand expr of a built-in postfix increment or
decrement operator must be a modifiable (non-const) lvalue
of non-boolean (since C++17) arithmetic type or pointer to
completely-defined object type. © cppreference.com

12

Templates everywhere

13

template <typename T>

T* gimme_addr(T &ref) { return &ref; }

struct thing;

template

const thing* gimme_addr(const thing &ref);

struct thing

{

const thing* operator&() const;

};

Templates everywhere

14

• Does it compile?

• What happens if it
does?

Templates everywhere

15

Templates everywhere

Which operator?

Built-in & thing::operator&

16

template <typename T>

T* gimme_addr(T &ref) { return &ref; }

struct thing;

template

const thing* gimme_addr(const thing &ref);

struct thing

{

const thing* operator&() const;

};

Templates everywhere

17

Templates everywhere

Which operator?

18

Templates everywhere

If & is applied to an lvalue of incomplete class type and the
complete type declares operator&(), it is unspecified whether
the operator has the built-in meaning or the operator
function is called.

The operand of & shall not be a bit-field.

© C++ Standard 7.6.2.1.5

19

Know thy traits

20

• We need Data Flow analysis for C++

• To store and track a value, you need a larger
container size

• I.e. 128 bits for your average 64-bit variable

• int128 anyone?

Know thy traits

21

Know thy traits

22

class Int128 { /*Spooky things*/ };

template <>

struct std::is_signed<Int128>

: std::true_type {};

static_assert(std::is_signed_v<Int128>);

Know thy traits

23

• Why are my tests failing like crazy all of a sudden?

Know thy traits

24

Know thy traits

25

Know thy traits

26

Know thy traits

None of the templates defined in <type_traits> may be
specialized for a program-defined type, except for
std::common_type and std::basic_common_reference (since
C++20). This includes the type traits and the class template
std::integral_constant.

© cppreference.com

27

Schrödinger's variable

28

volatile int a;

int main()

{

std::cout << a + a;

}

Schrödinger's variable

29

• Does it compile?

• Is this even legal?

• What is going to happen?

Schrödinger's variable

30

Schrödinger's variable

Reading an object designated by a volatile glvalue, modifying
an object, calling a library I/O function, or calling a function
that does any of those operations are all side effects, which
are changes in the state of the execution environment.

© C++ Standard 6.9.1.7

31

Schrödinger's variable

Except where noted, evaluations of operands of individual
operators and of subexpressions of individual expressions are
unsequenced.[...]

If a side effect on a memory location is unsequenced relative
to either another side effect on the same memory location or
a value computation using the value of any object in the
same memory location, and they are not potentially
concurrent, the behavior is undefined.

© C++ Standard 6.9.1.10

32

Schrödinger's variable

== UB*

* In case a is a volatile entity**

** The big 3 don't seem to care

33

Schrödinger's variable

a

a

34

The future is now

35

auto thing = "fluffy"sv;

std::async(std::launch::async,

[&thing] { thing = "spooky"sv; });

std::async(std::launch::async,

[&thing] { thing = "jabberwock"sv; });

std::cout << thing << std::endl;

The future is now

36

• What will it cout?

• Is there, by
chance, a data
race here?

The future is now

37

The future is now

Output?

38

The future is now

std::async(...);

std::future<...>

future::~future()

39

The future is now

If the implementation chooses the launch::async policy
[...]
the associated thread completion synchronizes with the
return from the first function that successfully detects the
ready status of the shared state or with the return from the
last function that releases the shared state, whichever
happens first.

© C++ Standard 32.9.9.6.4

40

auto thing = "fluffy"sv;

std::async(std::launch::deferred,

[&thing] { thing = "spooky"sv; });

std::async(std::launch::deferred,

[&thing] { thing = "jabberwock"sv; });

std::cout << thing << std::endl;

The future is now

41

auto thing = "fluffy"sv;

std::async(std::launch::deferred,

[&thing]

{

thing = "spooky"sv;

})

.wait_for(5s);

std::cout << thing << std::endl;

The future is now

42

The future is now

Output?

43

The future is now

If launch::deferred is set in policy[...]

The shared state is not made ready until the function has
completed.
The first call to a non-timed waiting function on an
asynchronous return object referring to this shared state
invokes the deferred function in the thread that called the
waiting function.

© C++ Standard 32.9.9.4.2

QUESTIONS

44

