

About me

PVS-Studio C++ analyser's
architect.

| love C++, cats, and
whining about legacy code

What is this talk about?

Exploring dusty corners of C++
Interactivity

Hopefully, learning something new
Having fun

CH+++++

C+++++

-Does it compile?
-Why?

CH++++

Qa+++++b
®+++++b

a :identifier

CH++++

a :identifier
€+++++b €++++b

G++++b ®+++b
+ -addition ++ :increment

8

+++++

C+++++

at+++++b

a :identifier ++ :increment ++ :increment

+ :unary

b :identifier

10

C+++++

++ ++

lvalue prvalue oopsy

The operand expr of a built-in postfix increment or
decrement operator must be a modifiable (non-const) lvalue
of non-boolean (since C++17) arithmetic type or pointer to
completely-defined object type. © cppreference.com

11

Templates everywhere

Templates everywhere

template <typename T>
T* gimme_addr(T &ref) { return &ref; }

struct thing;

template
const thing* gimme_addr(const thing &ref);

struct thing
{

const thing* operator&() const;

i

13

Templates everywhere

Does it compile? template <typename T>
What happens if it T* gimme_addr(T &ref) { return &ref; }

does? struct thing;

template
const thing* gimme_addr(const thing &ref);

struct thing
{

const thing* operator&() const;

¥

14

Templates everywhere

Which operator?

Built-in &

thing::operator&

15

Templates everywhere

template <typename T>
T* gimme_addr(T &ref) { return &ref; }

struct thing;

template
const thing* gimme_addr(const thing &ref);

struct thing
{

const thing* operator&() const;

i

16

Templates everywhere

Which operator? R
. x86-64 gcc 12.1 v 02

> A~ 9 Output. Y Filter.. B Libraries
* gimme_addr<thing const>(thing const&):
thing: :operator&() const

=+ Add new.. ™ A

1 thing const
2 jmp

x86-64 clang 14.0.0 - -02

Y Filter.. B Libraries = Add new..™ o Ac

A~ £ Output..™
* gimme_addr<thing const>»(thing const&):

1 thing const
. mow .
3 ret

x64 msvc v19.latest = JO2

A~ 9 Output.™ Y Fiter..™ [ELbraries =Add new..> 4 Add tool.

l ref$ = 8
2 thing const * gimme addr<thing const >(thing const &) PROC
3 jmp thing const * thing::operator&({void)const

4 thing const * gimme_ addr<thing const »>(thing const &) ENDP

4

Templates everywhere

If & is applied to an Ivalue of incomplete class type and the
complete type declares operator&(), it is unspecified whether
the operator has the built-in meaning or the operator

function is called.

The operand of & shall not be a bit-field.

© C++ Standard 7.6.2.1.5

18

Know thy traits

Know thy traits

We need Data Flow analysis for C++

To store and track a value, you need a larger
container size

l.e. 128 bits for your average 64-bit variable
int128 anyone?

20

Know thy traits

Know thy traits
class Int128 { }s

template <>
struct std::1is signed<Int128>
std: :true_type {};

static assert(std::is _signed v<Intl128>);

22

Know thy traits

Why are my tests failing like crazy all of a sudden?

class Int128 { }s

template <>
struct std::1is _sighed<Intl128>
std: :true_type {};

static assert(std::is_signed v<Int128>);

23

Know thy traits

x86-04 gcc 11.2

x86-64 clang 14.0.0

x6d msve v19.20

24

Know thy traits

x64 msvc v19.21 >y ©

example.cpp

<source»(13): error C2687: static assertion failed

Compiler returned: 2

4“.
.
A

imgflip.com

25

Know thy traits

None of the templates defined in <type_traits> may be
specialized for a program-defined type, except for
std::common_type and std::basic_common_reference (since
C++20). This includes the type traits and the class template
std::integral _constant.

© cppreference.com

26

Schrodinger's variable

Schrddinger's variable

Schradinger's variable

Does it compile?
s this even legal?
What is going to happen?

main()

std::cout << a + a;

29

Schradinger's variable

Reading an object designated by a volatile glvalue, modifying
an object, calling a library 1/0 function, or calling a function
that does any of those operations are all side effects, which
are changes in the state of the exe

© C++ Standard 6.9.1.7

i.
nommjnumh

THISCUBWITHMY/FEET

30

Schradinger's variable

Except where noted, evaluations of operands of individual
operators and of subexpressions of individual expressions are
unsequenced.|...]

If a side effect on a memory location is unsequenced relative
to either another side effect on the same memory location or
a value computation using the value of any object in the
same memory location, and they are not potentially
concurrent, the behavior is undefined.

© C++ Standard 6.9.1.10

31

Schradinger's variable

std::cout << a + a;

* In case a is a volatile entity™

** The big 3 don't seem to care

32

Schradinger's variable

The future is now

The future is now
thing = "fluffy"sv;

std::async(std::launch: :async,
[&thing] { thing = "spooky"sv; });

std::async(std::launch::async,
[&thing] { thing = "jabberwock"sv;

std::cout << thing << std::endl;

1)

35

The future is now

What WI” it COUt? auto thing = "fluffy"sv;

S there, by std::async(std: :launch::async,
Chance’ a data [&thing] { thing = "spooky"sv; });

race here? std: :async(std: :launch::async,

[&thing] { thing = "jabberwock"sv; });

std::cout << thing << std::endl;

36

The future is now

x86-64 gcc 11.2 -

Program returned: o

Program st

_ x86-64 clang 14.0.0 -
jabberwock

Program returned: o

Program stdout
jabberwock

¥64 msve v19.latest bl JO2 fetd:c++17

Compiler stdout

Avamnla cne

Program returned: @
Program stdout

jabberwock

37

The future is now

std::async(...);

future: :~future()

std: :future<...>

38

The future is now

If the implementation chooses the launch::async policy

[...]

the associated thread completion synchronizes with the
return from the first function that successfully detects the
ready status of the shared state or with the return from the
last function that releases the shared state, whichever
happens first.

© C++ Standard 32.9.9.6.4

39

The future is now
thing = "fluffy"sv;

std::async(std::launch: :deferred,
[&thing] { thing = "spooky"sv; });

std::async(std: :launch: :deferred,
[&thing] { thing = "jabberwock"sv;

std::cout << thing << std::endl;

1)

40

The future is now
thing = "fluffy"sv;

std::async(std::launch: :deferred,
[&thing]

1
thing = "spooky"sv;

1)

.wait for(5s);

std::cout << thing << std::endl;

41

The future is now

x86-64 gcc 11.2 -

Program returned: o
Program s1 x86-64 clang 14.0.0

fluffy
Program returned: ©
Program stdout
fluffy
x64 msvc v19.latest - f02 /std:ic++17

Compiler stdout

example.cpp

Program returned: @
Program stdout
flutfy

w

42

The future is now

If launch::deferred is set in policy]...]

The shared state is not made ready until the function has
completed.

The first call to a non-timed waiting function on an
asynchronous return object referring to this shared state

invokes the deferred function in the thread that called the
waiting function.

© C++ Standard 32.9.9.4.2

43

)
Z
O
—
)
LL]
>
o]

44

